CONTENTS

Approval

Introduction

Guidelines for documentation

Terminology & approved abbreviations

Patient refusals and no-transport

EMT-I standing orders summary

AEMT standing orders summary

Universal transport protocol & standing orders

G01-Guidelines for oxygen administration

G02-Guidelines for airway management and ventilatory support

G03-Guidelines for vascular access and fluid administration

G04-Guidelines for intraosseous placement

G05-Guidelines for PICC line access

G06-Guidelines for utilization of aeromedical transport

G07-Guidelines for multisystem trauma

G08-Guidelines for tourniquet use for extremity hemorrhage

G09-Guidelines for head injury

G10-Guidelines for burns

G11-Guidelines for isolated extremity injury
G12-Guidelines for traumatic cardiac arrest
G13-Guidelines for respiratory distress
G14-Guidelines for chronic obstructive pulmonary disease
G15-Guidelines for congestive heart failure
G16-Guidelines for asthma & croup
G17-Guidelines for pneumonia
G18-Guidelines for administration of CPAP
G19-Guidelines for non-traumatic shock
G20-Guidelines for cardiac arrest
G21-Guidelines for termination of resuscitation
G22-Guidelines for bradycardia
G23-Guidelines for PSVT
G24-Guidelines for ventricular tachycardia & ventricular ectopy
G25-Guidelines for asystole
G26-Guidelines for PEA
G27-Guidelines for ventricular fibrillation & pulseless ventricular tachycardia
G28-Guidelines for chest pain
G29-Guidelines for atrial fibrillation/atrial flutter
G30-Guidelines for patients with altered mental status
G31-Guidelines for excited delirium
G32-Guidelines for seizures
G33- Guidelines for acute stroke
G34- Guidelines for envenomations, allergic reactions, and anaphylaxis
G35- Guidelines for hypoglycemia
G36- Guidelines for overdose & toxic exposures
G37- Guidelines for hypertensive crisis
G38- Guidelines for near-drowning and submersion injury
G39- Guidelines for heat exhaustion and heat stroke
G40- Guidelines for hypothermia
G41- Guidelines for non-traumatic abdominal, back, & extremity pain
G42- Guidelines for OB-GYN emergencies
G43- Guidelines for AED use in cardiac arrest
G44- Guidelines for selective spinal immobilization
G45- Guidelines for use of physical restraints
G46- Guidelines for Pediatric fever
These medical protocols and standing orders are approved by Preston A. Ball, M.D., medical director for the Hall County Fire Services. They are reviewed periodically to ensure continued compliance with the standard of care for prehospital medicine.

These protocols and standing orders are valid until such time that they may be rescinded by the medical director. Any changes, additions, or deletions will be approved by the medical director prior to publication.

Approved: ___________________________ Date: ________________

Preston A. Ball, M.D.
Medical Director
Hall County Fire Services

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator

Hall County Fire Services
The purpose of these medical protocols and standing orders is to provide a uniform standard of care for the treatment and transport of patients treated by the Hall County Fire Services (HCFS.) They provide a standard format of accepted therapies and interventions for the majority of routine conditions encountered during HCFD operations. Obviously not all possible scenarios can be predicted, and prior training, judgment, adaptability, and utilization of on-line medical control are to be exercised for exceptional or unusual conditions.

These protocols are templates for treatment, not education or training, and are designed and written to rely heavily on the training and good judgment of the individuals using them; there is very limited “textbook information” or “how-to” information contained within (this material is appropriately contained in educational texts and courses.)

A baseline framework for the treatment of specific conditions are outlined in the latest curriculum and recommendations published by the:

- Department of Transportation.........................Paramedic
- American Heart Association..........................Advanced Cardiac Life Support
- American Heart Association..........................Pediatric Advanced Life Support
- American College of Emergency Physicians........Basic Trauma Life Support

These standardized guidelines may be modified to HCFS-specific recommendations at the judgment and discretion of the medical director.

These protocols contain treatment guidelines that are appropriate and specific for the condition identified in the protocol, i.e., hypoglycemia. All treatment and interventions noted in the protocol above the point labeled “CONTACT MEDICAL CONTROL” are hereby designated as “standing orders” and may be performed at the discretion of authorized personnel without prior authorization or medical control contact. These standing orders are authorized by the HCFS Medical Director and are to be utilized only when on duty and acting as a duly authorized representative of the HCFS. Treatments and interventions listed beyond the point labeled CONTACT MEDICAL CONTROL will not be performed without on-line medical control authorization.
MEDICAL SCENE AUTHORITY

If an intervening physician (other than the patient’s own private physician) gives medical treatment orders, he/she by definition becomes medical control for that encounter and must accompany the patient to the hospital and sign the PCR. If the intervening physician refused to travel with the patient, then HCFS personnel should continue to follow medical orders from the Northeast Georgia Medical Center medical control physician or continue to follow the appropriate HCFS protocol.

If a disagreement develops between the intervening physician and the medical control physician, or if the intervening physician refuses to speak to medical control, HCFS personnel should continue to follow medical orders from the medical control physician or continue to follow the appropriate protocol for patient management. When the patient’s private physician is present, HCFS personnel should defer to the orders of that physician. However, HCFS personnel should seek direction from medical control if orders or rendered by the physician is inconsistent with quality medical care as outlined in this manual.

HCFS personnel shall not comply with medical orders that exceed their scope of practice.
PURPOSE: To establish uniform standards of prehospital care documentation.

POLICY: The PCR will be completely filled out with all pertinent information. Be concise, neat, spell correctly, and use only approved abbreviations and terminology.

For every patient contact, the following must be documented:
1. A clear history of the present illness, including chief complaint, time of onset, associated complaints, pertinent negatives, mechanism of injury, scene details, etc.
2. A complete physical exam appropriate to the patient’s complaint.
3. An exact level of consciousness using the AVPU method.
4. At least one complete set of vital signs (pulse, respiratory rate, blood pressure, and temperature if appropriate.) Vital signs should be repeated after therapeutic interventions, medication administration, and upon arrival at the hospital.
5. For medication administration, document dosage, route of administration, time of administration, and response to therapy.
6. A complete listing of treatments performed in chronological order.
7. For extremity injury or pain, document motor and sensation function and distal pulses before and after immobilization.
8. For potential spinal injuries, document motor and sensation function before and after immobilization.
9. For IV/IO administration, note the size and insertion site of the catheter, type of IV fluid, and flow rate.
10. A telemetry strip should be attached to the PCR for all patients placed on the cardiac monitor. Any significant rhythm changes should be documented. For cardiac arrests, attach the initial rhythm, ending rhythm, pre- and post-defibrillation or cardioversion, pacing attempts, etc.
11. When obtained, attach the 12-lead EKG to the PCR.
12. For intubation or King LT insertion, document centimeter depth mark at the teeth, methods of tube placement confirmation, size of ET tube, number of attempts, and any complications.
13. Any orders requested, whether approved or denied.
14. Any other information not related directly to patient care or treatment (i.e., crime scene observation, conflicts with family or physician, etc.) should be documented in the narrative portion of the PCR.
Terminology & Approved Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Abdominal Aortic Aneurysm</td>
</tr>
<tr>
<td>ABC</td>
<td>Airway, Breathing, Circulation</td>
</tr>
<tr>
<td>ABD</td>
<td>Abdomen</td>
</tr>
<tr>
<td>AED</td>
<td>Automated External Defibrillator</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immunodeficiency Syndrome</td>
</tr>
<tr>
<td>Alert</td>
<td>Oriented to person, place, and time</td>
</tr>
<tr>
<td>ALS</td>
<td>Advanced Life Support (paramedic certified procedures)</td>
</tr>
<tr>
<td>AMA</td>
<td>Against Medical Advice</td>
</tr>
<tr>
<td>AMI</td>
<td>Acute Myocardial Infarction</td>
</tr>
<tr>
<td>AMS</td>
<td>Altered Mental Status</td>
</tr>
<tr>
<td>APGAR</td>
<td>Infant Assessment Scale</td>
</tr>
<tr>
<td>ASA</td>
<td>Aspirin</td>
</tr>
<tr>
<td>BBS</td>
<td>Bilateral Breath Sounds</td>
</tr>
<tr>
<td>Bicarb</td>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>BLS</td>
<td>Basic Life Support (EMT-I certified & all other procedures)</td>
</tr>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>Brady</td>
<td>Bradycardia</td>
</tr>
<tr>
<td>BVM</td>
<td>Bag-Valve Mask</td>
</tr>
<tr>
<td>CA</td>
<td>Cancer</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary Artery Bypass Graph</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>C/C</td>
<td>Chief Complaint</td>
</tr>
<tr>
<td>CHF</td>
<td>Congestive Heart Failure</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>CRT</td>
<td>Capillary Refill Time</td>
</tr>
<tr>
<td>CVA</td>
<td>Cerebrovascular Accident</td>
</tr>
<tr>
<td>D/C</td>
<td>Discontinue</td>
</tr>
<tr>
<td>DIB</td>
<td>Difficulty in Breathing</td>
</tr>
<tr>
<td>DX</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>DNR</td>
<td>Do Not Resuscitate</td>
</tr>
<tr>
<td>D5W</td>
<td>5% Dextrose in Water</td>
</tr>
<tr>
<td>D50</td>
<td>50% Dextrose</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>ED</td>
<td>Emergency Department</td>
</tr>
</tbody>
</table>

Policy: The list of terms and abbreviations on the following pages are approved by the HCFS Medical Director for use in documentation of the prehospital care report. No other abbreviations are to be used.
EDD Esophageal Detector
EKG Electrocardiogram
EMT Emergency Medical Technician
Epi Epinephrine
ER Emergency Room (used interchangeably with ED)
ET Endotracheal
ETC Esophatracheal Combitube
FB Foreign Body
FSBS Fingerstick Blood Sugar
Fx Fracture
G gram
gtts/min Drops per Minute
GCS Glasgow Coma Scale
GSW Gunshot Wound
HA Headache
HBV Hepatitis B Virus
HCV Hepatitis C Virus
HEENT Head, Eyes, Ears, Nose and Throat
HIV Human Immunodeficiency Virus
HT Heart Tones
HTN Hypertension
Hx History
IM Intramuscular
INT Intermittent Injection Cap
IO Intraosseus
IV Intravenous
JVD Jugular Venous Distention
kg kilogram
KVO Keep Vein Open
L Left
LBB Left Bundle Branch Block
LLQ Left Lower Quadrant
LMP Last Menstrual Period
LOC Level of Consciousness
LUQ Left Upper Quadrant
mcg Micrograms
Meds Medications
Meq Milliequivalents
MI Myocardial Infarction
Mg Milligram
mg/dL milligrams per deciliter
MgSO4 Magnesium Sulfate
ml milliliter
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmHg</td>
<td>Milimeters of Mercury</td>
</tr>
<tr>
<td>N/V/D</td>
<td>Nausea/Vomiting/Diarrhea</td>
</tr>
<tr>
<td>N & V</td>
<td>Nausea & Vomiting</td>
</tr>
<tr>
<td>NC</td>
<td>Nasal Cannula</td>
</tr>
<tr>
<td>NKDA</td>
<td>No Known Drug Allergies</td>
</tr>
<tr>
<td>NPA</td>
<td>Nasopharyngeal Airway</td>
</tr>
<tr>
<td>NRB</td>
<td>Nonrebreather Mask</td>
</tr>
<tr>
<td>NS</td>
<td>Normal Saline</td>
</tr>
<tr>
<td>NTG</td>
<td>Nitroglycerin</td>
</tr>
<tr>
<td>O2</td>
<td>Oxygen</td>
</tr>
<tr>
<td>PAC</td>
<td>Premature Atrial Contraction</td>
</tr>
<tr>
<td>PCN</td>
<td>Penicillin</td>
</tr>
<tr>
<td>PE</td>
<td>Pulmonary Embolism</td>
</tr>
<tr>
<td>PERRL</td>
<td>Pupils Equal, Round, & Reactive to Light</td>
</tr>
<tr>
<td>PJC</td>
<td>Premature Junctional Contraction</td>
</tr>
<tr>
<td>PMS</td>
<td>Pulses/Motor/Sensation</td>
</tr>
<tr>
<td>PPHX</td>
<td>Past Pertinent Medical History</td>
</tr>
<tr>
<td>PRN</td>
<td>As Needed or Necessary</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive Pressure Ventilation</td>
</tr>
<tr>
<td>PO</td>
<td>By Mouth</td>
</tr>
<tr>
<td>PT</td>
<td>Patient</td>
</tr>
<tr>
<td>PTA</td>
<td>Prior to Arrival</td>
</tr>
<tr>
<td>PVC</td>
<td>Premature Ventricular Contraction</td>
</tr>
<tr>
<td>Q</td>
<td>Every</td>
</tr>
<tr>
<td>R</td>
<td>Right</td>
</tr>
<tr>
<td>RA</td>
<td>Room Air</td>
</tr>
<tr>
<td>RBBB</td>
<td>Right Bundle Branch Block</td>
</tr>
<tr>
<td>RLQ</td>
<td>Right Lower Quadrant</td>
</tr>
<tr>
<td>RUQ</td>
<td>Right Upper Quadrant</td>
</tr>
<tr>
<td>RX</td>
<td>Medication</td>
</tr>
<tr>
<td>SaO2</td>
<td>Oxygen Saturation</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic Blood Pressure</td>
</tr>
<tr>
<td>SL</td>
<td>Sublingual</td>
</tr>
<tr>
<td>SLUDGE</td>
<td>Salivation, Lacrimation, Urination, Defecation, Gastrointestinal Upset</td>
</tr>
<tr>
<td>SVN</td>
<td>Small Volume Nebulizer</td>
</tr>
<tr>
<td>SVNM</td>
<td>Small Volume Nebulizer Mask</td>
</tr>
<tr>
<td>SOB</td>
<td>Shortness of Breath</td>
</tr>
<tr>
<td>SQ</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>SVT</td>
<td>Supraventricular Tachycardia</td>
</tr>
<tr>
<td>TIA</td>
<td>Transient Ischemic Attack</td>
</tr>
<tr>
<td>V/S</td>
<td>Vital Signs</td>
</tr>
<tr>
<td>VF</td>
<td>Ventricular Fibrillation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>VT</td>
<td>Ventricular Tachycardia</td>
</tr>
<tr>
<td>WNL</td>
<td>Within Normal Limits</td>
</tr>
<tr>
<td>w/</td>
<td>With</td>
</tr>
<tr>
<td>w/o</td>
<td>Without</td>
</tr>
<tr>
<td>WT</td>
<td>Weight</td>
</tr>
<tr>
<td>WO</td>
<td>Wide Open</td>
</tr>
<tr>
<td>Y/O</td>
<td>Years Old</td>
</tr>
</tbody>
</table>
POLICY: To establish uniform criteria for practice and documentation for patient refusals and no-transports.

GENERAL: Along with airway complications and emergency vehicle operations, no-transports represent one of the three leading topics of medicolegal risk and litigation. Meticulous and detailed documentation is the key factor in avoidance of litigation; the most important document of the no-transport interaction is the written PCR narrative that thoroughly documents the encounter, not the signed refusal form.

PRACTICE:

1. Encourage and facilitate transport if at all possible.
2. Assess competency to refuse care, noting mental status, Glasgow Coma Scale, description of the patient’s behavior, and assessment of influences that may interfere with mental capacity such as illness, injury, and stated or observed intoxication. Document this in the PCR.
3. Rude and/or unprofessional conduct is often a catalyst for complaints and legal action.
4. Patient questions about proposed care, alternatives, and risks of refusal should be answered and documented.
5. The patient should be informed of the limitations of the prehospital assessment, especially the unreliability of the 12-lead EKG to exclude acute coronary syndrome, the plan of treatment to be rendered, and potential complications of refusal; this should be documented in the PCR.
6. Emphasize the offer to return should the patient change their mind and document this in the PCR.
7. If “no patient contact was made”, document this in the PCR; this established that no patient-provider relationship was established.
8. In addition to the PCR, a signed, completed refusal or treatment and/or transport must be filled out and accompany the PCR; if the patient refuses assessment, having vital signs taken, or to sign the refusal, document this in the PCR.
POLICY: This is a summary of interventions performed by providers at the EMT-I level under standing orders for patients meeting specific criteria for the indicated intervention under the appropriate treatment protocol.

TREATMENT:
1. Establish IV access, with INT placement, KVO infusion, or bolus infusion of NS as appropriate.
2. King LT placement in adult patients in cardiac arrest, or with profound respiratory distress with absent airway reflexes.
3. Adult and pediatric IO access with approved device for patients in cardiac or respiratory arrest or significant trauma with SBP < 90 in whom IV access cannot be obtained.
4. SQ epinephrine 0.3cc of 1:1000 concentration (0.01cc/kg for pediatric patients, with maximum dose of 0.3cc) for allergic reaction/anaphylaxis with airway or oropharyngeal edema, respiratory distress with wheezing and/or stridor, or SBP < 100.
5. D50, 1 ampule IV/IO for patients with altered mental status and blood glucose level < 40.
POLICY: This is a summary of interventions performed by providers at the EMT-A level under standing orders or at the discretion of medical control for patients meeting specific criteria for the indicated intervention under the appropriate treatment protocol.

TREATMENT:
1. Establish IV access, with INT placement, KVO infusion, or bolus infusion of NS as appropriate.
2. King LT placement in adult patients in cardiac arrest, or with profound respiratory distress with absent airway reflexes.
3. Adult and pediatric IO access with approved device for patients in cardiac or respiratory arrest or significant trauma with SBP < 90 in whom IV access cannot be obtained.
4. IM Epinephrine 0.3cc of 1:1000 concentration (0.01cc/kg for pediatric patients, with maximum dose of 0.3cc) for allergic reaction/anaphylaxis with airway or oropharyngeal edema, respiratory distress with wheezing and/or stridor, or SBP < 100.
5. D50, 25 grams IV/IO for patients with altered mental status and blood glucose level < 40.
6. CPAP as indicated for patients in respiratory distress.
7. Glucagon 1mg IM for symptomatic patients with blood glucose <40 and IV access cannot be rapidly established
8. 324mg ASA PO and Nitroglycerin (SL) for patients with chest pain of suspected cardiac origin after 12-lead EKG obtained and transmitted to medical control, and after medical control direction.
9. Nebulized albuterol for symptomatic patients with wheezing per asthma or COPD protocol
10. For patients with suspected opiate overdose, consider Narcan:
 A. .4mg-2mg IV or
 B. 2mg IN
 Only after contacting Medical Control and receiving orders to administer
11. Use of physical restraints for agitated/combative patients after contacting/receiving orders from medical control
12. Tourniquet use for uncontrolled extremity hemorrhage per protocol
13. Childbirth emergencies per protocol
PURPOSE: To establish uniform criteria for assessment and therapeutic modalities that may be performed by HCFS personnel under standing orders and without prior authorization by medical control.

PRACTICE: Any patient requiring transport via HCFS ambulance may have, at the discretion of the treating paramedic:

1. Oxygen administered via administration device at the discretion of the treating paramedic.
2. Cardiac monitoring
3. 12-lead EKG obtained
4. IV access with INT or KVO infusion of NS
5. Pulse oximetry obtained
6. Fingerstick glucose obtained
7. Spinal immobilization for appropriate clinical scenario
8. Extremity splinting and immobilization as appropriate

Conscious, alert patients with grossly adequate decision-making capacity may decline or refuse any of the above interventions.
POLICY: To establish guidelines for flow rates and delivery devices based on severity of illness.

PROCEDURE:
1. Flow rates of 2-6 LPM administered by NC is appropriate for stable patients including:
 1. Chest pain without respiratory distress
 2. Stable OB/GYN patients without hemorrhage or complication
 3. Overdose patient without altered mental status or respiratory compromise
 4. Fever

2. Flow rates of 12-15 LPM administered by NRB is indicated for patients with severe illness or injury, and include the following patients:
 1. Respiratory distress and/or cyanosis/hypoxia
 2. Shock
 3. Overdose patient with altered mental status or respiratory compromise
 4. Smoke inhalation and/or carbon monoxide poisoning
 5. Active seizures
 6. Comatose patients with adequate ventilatory drive
 7. Major trauma

3. For stable COPD patients, attempt to administer only enough supplemental oxygen to alleviate their symptoms. For patients on chronic home oxygen, increase their baseline flow rate by 2 LPM initially; attempt to maintain SaO2 of 90%.

4. For COPD patients with severe respiratory distress, immediately administer oxygen at 12-15 LPM by NRB
POLICY: To establish uniform guidelines for management of patients requiring ventilatory support and/or airway control.

PRACTICE:

1. Ensure open and clear airway using head-tilt chin-lift or modified jaw thrust, suction, and foreign body removal as appropriate.

2. Assist ventilations with BVM for patients with inadequate ventilatory drive or apnea.

3. Airway adjuncts should be used for all patients requiring ventilatory assistance with BVM; oropharyngeal airway if tolerated, and, unless contraindicated, nasopharyngeal airways for patients whom cannot tolerate an oropharyngeal airway. A combination of oropharyngeal, one, and sometimes two nasopharyngeal airways may be necessary in patients who are difficult to ventilate.

4. Definitive airway control with blind insertion of a supraglottic airway (King LT) is indicated in apneic patients or patients with respiratory failure from any cause with depression of airway maintenance reflexes that permit passage of a supraglottic device.

5. Definitive airway control with endotracheal intubation or blind insertion of a supraglottic airway (King LT) is indicated in apneic patients or patients with respiratory failure from any cause with depression of airway maintenance reflexes that permit direct laryngoscopy and intubation or passage of a supraglottic device.

6. Route and technique of intubation will be at the discretion, experience, and preference of the treating paramedic.

7. Confirmation of proper tube placement is required, every intubation, ETT or KING LT, is to be confirmed with the use of end-tidal CO2 monitoring. A minimum of two values shall be documented within the PCR.

Any failure to receive a capnography reading should be documented and a colorimetric ETCO2 detector should be utilized. The colorimetric ETCO2 detector must remain on the ETT or King LT and be confirmed by a physician before transfer of patient from our stretcher.
8. Using clinical methods alone for confirmation of ETT placement is inadequate and unreliable. However, immediately following tube placement and prior to ETCO2 monitoring, these methods can provide real-time feedback for ETT placement.

 Clinical methods include:
 A) Auscultation of breath sounds over the chest during ventilation
 B) Absence of epigastric sounds during ventilation
 C) Condensation or “fogging” within the ETT
 D) Ease of ventilation (easy delivery of artificial respirations using self-inflating bag)
 E) Continued acceptable or improved SaO2 readings

9. Any doubt concerning ETT position should be considered an esophageal placement whereby removal of the ETT is imperative. Removal of an ETT after a failed attempt to place an ETT should be followed with artificial respirations prior to subsequent attempts for proper placement.

10. After placement of an ETT or King Lt, these devices must be secured using a commercial restraint device along with applying a cervical collar to minimize movement or dislodgement of the device.

11. Verification of ETT position should be done each time a patient is moved and such verification should be document within the PCR.

12. Intubated patients will have continuous pulse oximetry monitoring and a minimum of two values will be documented.

13. For patients with an airway that cannot be secured via ET intubation or King LT placement and where assisted ventilations are ineffective, the provider should immediately consider performing a needle cricothyrotomy, and deliver respirations via trans-tracheal jet ventilation system or an oxygen-supplied self-inflating bag connected to a size 3 ETT hub adapter connected to the catheter.
14. Nebulized medications may be administered via the ETT in intubated patients with the nebulizer chamber interposed between the self-inflating bag and the ETT adapter; ensure a separate oxygen supply to the nebulizer to assure medication is properly nebulized.

15. Pharmacologically-assisted intubation with the use of sedative medication is not to be routinely practiced; the decrease in preload and perfusion associated with the dose of midazolam required to facilitate intubation is physiologically much worse than the temporary inability to intubate secondary to a clenched jaw. These patients should receive assisted ventilations and supplemental oxygen and be transported rapidly to the hospital where they may undergo airway control with medications that can be tailored to their clinical condition.

ALL THE ABOVE INTERVENTIONS ARE CONSIDERED STANDING ORDERS AND MAY BE IMPLEMENTED IN THE APPROPRIATE CLINICAL SCENARIO WITHOUT PRIOR MEDICAL CONTROL AUTHORIZATION

MEDICAL CONTROL MAY BE CONTACTED AT ANY TIME FOR GUIDANCE
PURPOSE: Establish guidelines for vascular access for fluid support and medication administration, fluid administration sets, volume resuscitation, and intraosseous access in critical cases with failure to establish IV access.

POLICY:

1. Vascular access should be obtained in all patients who potentially may need intravenous medications, fluid support, or have significant illness or injury.
2. Normal saline is appropriate for all HCFS prehospital uses.
3. When medications are added to a bag of IV fluid for administration as a continuous infusion, the bag should be labeled with the date, time, name & dose of medication, rate of administration, and the name of the administering paramedic.
4. The following administration sets are carried on HCFS ambulances:
 A) Microdrip set – 60gtts/cc
 B) Standard set – 10gtts/cc
 C) Blood pump set – 10gtts/cc, with pressure infusion bulb
5. The type of fluid administration set should be based on the clinical scenario and reason for intravenous access:
 A) For hypertensive or normotensive patients that would not benefit from either rapid or large-volume fluid administration, such as CHF patients, use of the microdrip set is appropriate.
 B) For routine medication administration and volume expansion in most medical patients, the standard set is appropriate.
 C) For rapid fluid administration in hypotensive trauma patients, patients in severe shock (ruptured aortic aneurysm, sepsis), and in those patients likely to require urgent surgery (penetrating chest or abdominal injury, open fractures, etc.), use of the blood pump set is appropriate.
6. For patients in shock that require rapid and large-volume infusion, the fluid administration set should be attached directly to the IV catheter WITHOUT an INT cap in between.
7. When IV fluid is administered for volume replacement and/or shock resuscitation, an initial fluid bolus of 500-1000cc is appropriate, with further infusion guided by the patient’s clinical response.
9. For volume replacement in pediatric patients, an initial fluid bolus of 20cc/kg is recommended, and may be repeated based on the patient’s clinical response.
INTRAOSSEOUS INFUSION

1. Adult and pediatric intraosseous infusion is to be established in UNCONSCIOUS patients with the following clinical scenarios when rapid IV access is unable to be obtained in a reasonable amount of time (90 seconds) or after 2-3 attempts:
 A) Cardiac or respiratory arrest
 B) Shock with SBP < 90
 C) Near-drowning
 D) Multitrauma
 E) Status epilepticus

INTRAOSSEOUS ACCESS OBTAINED UNDER THE ABOVE CONDITIONS IS A STANDING ORDER AND DOES NOT REQUIRE PRIOR AUTHORIZATION FROM MEDICAL CONTROL
TRAINING: Intraosseous infusion and the use of the EZ IO® infusion system require specific training prior to use.

INDICATIONS:
- EZ-IO AD® (40 kg and over) & EZ-IO PD® (3 – 39 kg)
- 1. Intravenous fluids or medications are needed and a peripheral IV cannot be established in 2 attempts or 90 seconds
 - **AND** the patient exhibits one or more of the following:
 - a. An altered mental status (GCS of 8 or less)
 - b. Respiratory compromise (SaO2 80% after appropriate oxygen therapy, respiratory rate < 10 or > 40 min)
 - c. Hemodynamic instability (Systolic BP of < 90).
- 2. EZ-IO AD® & EZ-IO PD® may be considered PRIOR to peripheral IV attempts in the following situations:
 - a. Cardiac arrest (medical or traumatic)
 - b. Profound hypovolemia with alteration of mental status
 - c. Patient in extremis with immediate need for delivery of medications and fluids.

CONTRAINDICATIONS:
- Fracture of the bone selected for IO infusion (consider alternate site)
- Excessive tissue at insertion site with the absence of anatomical landmarks (consider alternate site)
- Previous significant orthopedic procedures (IO within 24 hours, prosthesis - consider alternate tibia)
- Infection at the site selected for insertion (consider alternate site)

CONSIDERATIONS:
- **Flow rate:** Due to the anatomy of the IO space you will note flow rates to be slower than those achieved with IV catheters.
 - Ensure the administration of an appropriate rapid syringe bolus (flush) prior to infusion **NO FLUSH = NO FLOW**
 - Rapid syringe bolus (flush) the EZ-IO AD® with 10 ml of normal saline
 - Rapid syringe bolus (flush) the EZ-IO PD® with 5 ml of normal saline
 - Repeat syringe bolus (flush) as needed
 - To improve continuous infusion flow rates always use a syringe, pressure bag or infusion pump
INSERTION SITES: In adults and patients weighing 40 kg or greater
1. Proximal humerus, proximal tibia, distal tibia
2. Proximal humerus, proximal tibia, distal tibia with EZIO PD needle

PAIN: Insertion of the EZ-IO AD® & EZ-IO PD® in conscious patients has been noted to cause mild to moderate discomfort (usually no more painful than a large bore IV). However, IO Infusion for conscious patients has been noted to cause severe discomfort
 • Prior to IO syringe bolus (flush) or continuous infusion in alert patients, SLOWLY administer Lidocaine 2% (PreservativeFree) through the EZ-IO hub.
 • EZ-IO AD® Slowly administer 20 – 40 mg Lidocaine 2% (Preservative Free)
 • EZ-IO PD® Slowly administer .5 mg /kg Lidocaine 2% (Preservative Free)

PRECAUTIONS: The EZ-IO AD® & EZ-IO PD® are not intended prophylactic use

EQUIPMENT:
1. EZ-IO® Driver
2. EZ-IO AD® or EZ-IO PD® Needle Set
3. Alcohol or Betadine Swab
4. EZ-Connect® or Standard Extension Set
5. 10 ml Syringe
6. Normal Saline (or suitable sterile fluid) Pressure Bag or Infusion Pump
7. 2% Lidocaine (preservative free) EZ-IO® Yellow wristband

PROCEDURE:
1. Wear approved Body Substance Isolation Equipment (BSI)
2. Determine EZ-IO AD® or EZ-IO PD® Indications
3. Rule out Contraindications
4. Locate appropriate insertion site
5. Prepare insertion site using aseptic technique
6. Prepare the EZ-IO® driver and appropriate needle set
7. Stabilize site and insert appropriate needle set
8. Remove EZ-IO® driver from needle set while stabilizing catheter hub
9. Remove stylet from catheter, place stylet in shuttle or approved sharps container
10. Confirm placement
11. Connect primed EZ-Connect®
12. Slowly administer appropriate dose of Lidocaine 2% (Preservative Free) IO to conscious patients
13. Syringe bolus (flush) the EZ-IO® catheter with the appropriate amount of NS
15. Utilize pressure (pressure bag or infusion pump) for continuous infusions where applicable
16. Begin infusion
17. Dress site, secure tubing and apply wristband as directed
18. Monitor EZ-I0® site and patient condition
PURPOSE: To establish guidelines for emergency access of PICC (peripherally-inserted central catheter) lines for fluid and/or medication administration by HCFS personnel.

POLICY: PICC lines are placed in patients in whom routine IV access is difficult, and/or in patients receiving intravenous medications at home or chemotherapy. While slightly more prone to complications than a virgin peripheral IV line, they can be used in emergency cases for administration of intravenous fluids and/or medications when standard peripheral IV access cannot be rapidly established.

PRACTICE: For patients with pre-existing PICC lines requiring urgent administration of intravenous fluids and/or medications in whom standard peripheral intravenous access cannot be rapidly established:

1. Explain procedure to the patient.
2. Prep port by vigorously rubbing with alcohol prep for a minimum of 30 seconds.
3. Flush PICC line with 10cc normal saline before administration of IV fluids or medications.
4. If unable to flush the PICC line or if resistance is felt, abort further attempts at use.
5. Administer IV fluids and/or medications as you normally would with a peripheral IV catheter.
6. Unless a continuous infusion of IV fluid is infusing, flush the PICC line with 10cc normal saline before, between, and after any medication administration.
PURPOSE: To establish uniform guidelines to determine which patients may benefit from air medical transport from the accident scene to a trauma center or other specialized facility (burn, replantation, pediatric, or hyperbaric.)

POLICY: While mechanism of injury is an important predictor of possible injury patterns, anatomic and physiologic criteria more reliably relate to actual injury. Therefore, mechanism of injury alone, without accompanying anatomic or physiologic manifestations of severe injury, should not be used as the sole determinant of air medical transport.

Anatomic criteria – demonstratable injuries noted by exam (flail chest, spinal cord injury with paralysis, etc.)

Physiologic criteria – abnormalities of vital signs

Unless saturation of resources is present at NGMC, all adult trauma patients should be routinely transported to NGMC. Early notification of medical control is crucial to allow for mobilization of resources and to assess capacity. **Children less than 15 years of age and severe burns should be considered for air transport to appropriate facilities.**

Conditions favoring utilization of air medical transport:
1. Major trauma in patients less than 15 years of age.
2. Environmental or traffic conditions or scene location resulting in prolonged transport of > 40 minutes
3. Diving injury with symptoms suggestive of decompression illness or air embolism requiring transport to a hyperbaric center (not simple drowning or related submersion incidents)
4. Major burn involving the face, airway, or large body surface area requiring transport to a burn center
5. Extremity amputation or near-amputation

A balance exists between delaying transport while waiting on helicopter arrival and local transport for hospital care. All possible scenarios cannot be predicted, and ongoing good judgment on the part of the scene paramedic with input from medical control will allow for decisions made in the best interest of the patient.
PURPOSE: To establish uniform guidelines for field management of patients with severe multisystem trauma.

POLICY:
1. Minimize scene time and focus importance on rapid stabilization and transportation to the hospital for definitive management. On-scene time should be limited to initial assessment, spinal packaging, management of uncontrolled airways, and other immediately life-threatening conditions. Note specifics of the accident scene, blood loss, and CRT.
2. Minimize heat loss; in cold environments IV fluids should be warmed if possible; hot packs attached to fluid bags will warm them to some degree.

PRACTICE:
1. Oxygen administered via NRB
2. Airway control with ET intubation or King LT placement as necessary
3. Spinal immobilization
4. For patients with suspected TENSION PNEUMOTHORAX, assess using hard signs and possible signs.
 Hard signs – hypotension, severe respiratory distress, and absent lung sounds
 Possible signs – jugular venous distention, tracheal deviation, subcutaneous emphysema, and probable altered mental status
 For patients with signs of tension pneumothorax as above, with respiratory distress, SBP < 100, and altered or decreasing level of consciousness:
 A) Attempt to “burp” a sealed open pneumothorax
 B) Perform needle decompression; consider using a finger cut from a non-powdered glove to serve as a one-way valve or chest seal dressing
 C) If clinical improvement occurs, may repeat decompression as necessary if clinical condition deteriorates
5. Large bore IV/IO access with two IV lines if possible, with IV fluid bolus if SBP > 90; decrease fluid infusion rate if SBP increases to > 100 and maintain SBP around 100
6. Splint fractures if time and stability allow, with traction splint use for unilateral femur fractures
7. Obtain blood glucose level if altered mental status is present
8. Control external hemorrhage
9. Rapid transport
PURPOSE: To establish guidelines for tourniquet use for extremity hemorrhage

POLICY: Tourniquet use for exsanguinating extremity hemorrhage is an uncommon although lifesaving procedure. Immediate control of bleeding is vital for patient survival and to minimize complications after resuscitation. *Strict protocol compliance is necessary for appropriate patient selection and to minimize complications related to tourniquet use.*

PRACTICE: In addition to routine care of the injured patient (supplemental oxygen, IV access and NS infusion, and treatment of other injuries) tourniquet application to control extremity hemorrhage is appropriate in the following circumstances:

1. **Multi-casualty incidents** where immediate extremity hemorrhage control is necessary to assess and triage other patients, and when other time-sensitive interventions must be performed.
2. **Single-patient encounters** with:
 a. Extremity bleeding uncontrolled by pressure dressing
 b. Injury not amenable to pressure dressing
 c. Amputation proximal to digital M-P joints
 d. Significant bleeding in the presence of:
 i. Need for airway management or ventilatory support
 ii. Circulatory shock
 iii. Multiple bleeding locations
 iv. Need for other critical interventions
3. Apply **approved tourniquet** device above wound over thickest part of limb (thigh or upper arm)
4. Do not attempt improvising a make-shift tourniquet
5. Avoid placing tourniquet over joints
6. Use lowest effective pressure to stop bleeding
7. Document use in PCR including exact time of placement; may notify dispatch, stating “mark time of tourniquet application.”
8. Verbally communicate use of tourniquet to recipient of patient during turnover report & document this notification in the PCR, preferably with name of individual to whom the verbal report was given
9. Never cover the tourniquet
10. Minimize tourniquet time with emergency transport
11. If tourniquet time/transport is less than 30 minutes, may leave in place during transport
12. If hemorrhage appears controlled, there is no amputation, circulatory shock is not present, other critical interventions have been completed, adequate manpower is present, and transport is delayed or prolonged greater than 30 minutes, may reassess need for continued use of the tourniquet
 a. Apply pressure dressing to wound before loosening tourniquet
 b. Slowly release tourniquet pressure while evaluating wound for bleeding
 c. If significant bleeding recurs and is uncontrolled with pressure dressing, re-tighten the tourniquet until bleeding is controlled

13. Consider analgesic use per extremity injury protocol for pain following tourniquet application
PURPOSE: To establish uniform treatment guidelines for patients with severe head injury

PRACTICE:

1. Note level of consciousness using AVPU method
2. Assess ventilatory adequacy & assist ventilations as needed
3. Maintain secure airway with ET intubation or King LT placement as needed
4. Avoid hyperventilation; ventilate approximately 12-16 breaths/minute
5. Spinal immobilization
6. Obtain blood glucose level & administer D50 1 ampule if blood glucose < 40
7. Obtain IV access: administer IV fluid bolus if SBP < 100; maintain SBP > 100
8. Rapid transport
9. Assess for other injuries

CONTACT MEDICAL CONTROL

10. Consider sedation of combative patients with versed 1-2 mg IV
PURPOSE: To establish uniform treatment for patients with burns

POLICY: Assess for aeromedical transport utilization for patients with airway or facial burns, severe concomitant injuries, and extensive body surface area involvement

PRACTICE:

1. Remove/stop the burning process
2. Assess for probable carbon monoxide exposure/closed space exposure or confined space environment, heat inhalation injury/airway burns, and estimate body surface area and depth (partial or full-thickness) of burn
3. Cool burn area with water irrigation for 1 minute only; avoid hypothermia
4. Remove wet and/or burned clothing
5. Supplemental oxygen per clinical severity
6. Cardiac monitoring for significant burns
7. Obtain IV access; administer IV fluid bolus if SBP < 100 & titrate to maintain SBP > 100

8. May administer morphine 2-10mg IV (or fentanyl 25-50mcg IV for morphine allergic patients) titrated for pain control IF SBP > 100 and no sign of airway burn/compromise or altered mental status is present
9. May administer zofran 4mg IV as needed for nausea
10. For patients with HEAT INHALATION INJURY or AIRWAY BURNS with respiratory distress, airway edema, wheezing, or stridor:
 A) Administer nebulized albuterol treatment
 B) Administer solumedrol 125mg IV
11. Secure airway with ET intubation, King LT placement, or needle cricothyrotomy as clinically indicated

CONTACT MEDICAL CONTROL

12. Consider nebulized epinephrine 5cc of 1:1000 concentration for patients with heat inhalation injury or airway burns with severe respiratory distress, airway edema, wheezing, or stridor not relieved by albuterol and solumedrol
13. Additional morphine or fentanyl as required for pain control
PURPOSE: To establish uniform guidelines for treatment and analgesia for patients with isolated extremity injury in the absence of severe multisystem trauma; the goal is to reduce pain to a tolerable level and avoid oversedation.

POLICY: This protocol is indicated for patients with isolated extremity injury including suspected fracture with deformity, significant burn, or significant soft tissue injury (laceration or avulsion) with:
1. No suspicion/sign/symptom of head or spinal injury
2. Normal mental status, alert, and conscious
3. SBP > 100
4. Severe pain

PRACTICE:
1. Immobilize/splint/control hemorrhage/apply dressing as appropriate
2. Document neurovascular status/distal pulses of injured extremity
3. Establish IV access

4. Consider 4mg Zofran prior to administering Narcotics
5. Administer Morphine 2-10mg IV or Fentanyl 25-50mcg IV titrated for pain control.
 * Reassess BP and respiratory status after each dose.
6. Monitor patient response to therapy using 1-10 pain scale and document findings

CONTACT MEDICAL CONTROL

6. Contact medical control for patients requiring doses of greater than 10mg Morphine or 100mcg Fentanyl.
7. Contact medical control for dosing when considering pain management in Pediatrics.
8. Consider administration of Zofran (0.15mg/kg) to a max of 2mg prior to administering Narcotics in pediatric patients that are >6 months old.
PURPOSE: To establish guidelines for management of patients with traumatic cardiac arrest in the field.

POLICY: Mortality for patients suffering cardiac arrest in the field from trauma is exceptionally high and approaches 100%. Any hope for survival rests with rapid identification and correction of a reversible cause (airway obstruction, hypovolemia, active hemorrhage, tension pneumothorax, or pericardial tamponade.) Patients who fail to improve with these interventions are unlikely to survive; resuscitation medications possibly add some adjunctive benefit, but trauma arrest patients seldom respond to traditional ACLS therapy alone.

In order to preserve dignity, conserve precious human and financial resources, and to minimize risks to the health care workers involved, patients who can be predicted to be unsalvageable should not be transported emergently to the hospital. At the scene of blunt injury, patients without vital signs or, in the case of penetrating trauma, patients without vital signs or other signs of life will not survive even with the most aggressive of therapies.

The National Association of EMS Physicians and the American College of Surgeons Committee on Trauma support withholding or terminating out-of-hospital resuscitation of adult traumatic arrest patients:

BLUNT TRAUMA: Patients who are apneic, pulseless, and without organized electrical cardiac activity or PEA rhythm with rate <40

PENETRATING TRAUMA: Patients who are apneic & pulseless should be assessed rapidly for signs of life (pupillary reactivity, spontaneous movement, or organized electrical cardiac activity or PEA rate >40). If these signs of life are absent, resuscitation may be withheld, or terminated if resuscitative efforts were initiated prior to ALS arrival. If life signs are present, emergent transport should be instituted immediately, with resuscitative efforts performed en route.

TERMINATION OF RESUSCITATIVE EFFORTS is appropriate in cases of EMS-witnessed traumatic arrest after 15 minutes of unsuccessful resuscitation and CPR.

Traumatic arrest patients with transport times of >15 minutes are considered unsalvageable, and termination is considered appropriate.
PATIENTS EXEMPT FROM THESE RECOMMENDATIONS INCLUDE:

- Children <15 years of age
- Victims of lightning strike
- Drowning patients with potential or suspected hypothermia
- Patients in whom a medical cause of arrest (i.e., MI) is the likely inciting event

PRACTICE: Patients in cardiac arrest resulting from trauma should be assessed rapidly by the treating paramedic or EMT

A. **Blunt trauma arrest patients** – patients found apneic, pulseless, and without organized electrical cardiac activity or PEA rhythm with rate <40 are to be declared dead at the scene

B. **Penetrating trauma arrest patients** – patients found apneic, pulseless, without organized electrical cardiac activity or PEA rhythm with rate <40, and without signs of life are to be declared dead at the scene

For patients deemed potentially salvageable (i.e., not A or B above) by the treating paramedic:

Note: immediate transport is crucial, with focus on resuscitative interventions being performed en route.

1. CPR
2. Airway control with ET intubation or King LT placement
3. Provide ventilations with a rate of 8-10 breaths per minute with supplemental oxygen
4. IV/IO access with bilateral large-bore IVs with wide-open IV fluid bolus
5. Spinal immobilization
6. Bilateral chest decompressions (unless clinical assessment clearly excludes tension pneumothorax)
7. Epinephrine per appropriate arrhythmia protocol (VF, PEA)
8. Rapid transport
9. Notify receiving facility as early as possible

*** CONTACT MEDICAL CONTROL ***

Consider termination of resuscitative efforts if:

1. Resuscitation has been initiated in blunt or penetrating traumatic arrest patients who are apneic, pulseless, without organized electrical cardiac activity or PEA rate <40, and without signs of life
2. In cases of EMS-witnessed traumatic arrest: after 15 minutes of unsuccessful resuscitative efforts (return of pulse, ROSC, or organized electrical cardiac activity >PEA rate of 40)
3. Traumatic arrest patients with transport times clearly >15 minutes

Preston A. Ball, M.D., Medical Director

Capt. Bobby Ogletree, EMS Coordinator
PURPOSE: To establish uniform criteria for the assessment and management of patients with respiratory difficulty and attempt to categorize them into the appropriate protocol for their specific clinical condition, if possible.

PRACTICE:

1. Assess for abnormalities and assess ventilatory adequacy, with supplemental oxygen and ventilatory assistance per appropriate protocol.
2. Obtain pulse oximeter reading
3. Attach cardiac monitor
4. Obtain IV access
5. Attempt to categorize patients into the appropriate protocol for their clinical scenario, if possible:
 A) Congestive Heart Failure/Pulmonary Edema
 B) Chronic Obstructive Pulmonary Disease
 C) Asthma and Croup
 D) Pneumonia
6. Not all patients will be able to be categorized as above or exhibit a mixed clinical picture; in these instances, supplemental oxygen, ventilatory assistance as needed, and further guidance from medical control should be utilized.
PURPOSE: To establish guidelines for management of patients presenting with worsening or exacerbation of underlying COPD.

PRACTICE: For patients with COPD, respiratory difficulty, and wheezing (or absent breath sounds in patients with severe exacerbations):

1. Attempt to calm and reassure patient
2. Assess for ventilatory adequacy and intervene with ventilatory assistance and/or airway control as needed
3. For patients on home oxygen not in severe distress or extremis, initially increase their flow rate by 2 liters per minute and reassess
4. For patients in severe respiratory distress or those who fail to improve with increased flow rates as in #3 above, move to non-rebreather mask or CPAP
5. Establish IV access
6. Attach cardiac monitor
7. Administer nebulized Albuterol treatment
8. Consider CPAP; see separate CPAP protocol

9. Reassess
10. If dyspnea and/or wheezing persist after first albuterol treatment:
 A) Administer Solu-Medrol 125mg IV (or IM if IV access is unable to be obtained)
 B) Repeat nebulized albuterol treatment

CONTACT MEDICAL CONTROL
PURPOSE: To establish uniform treatment guidelines for patients with decompensated congestive heart failure

POLICY: Patients eligible for this protocol should have a strong clinical suspicion to have CHF/pulmonary edema, as some of the following therapies can be detrimental or dangerous if applied to other conditions such as pneumonia, COPD, and asthma. An existing diagnosis of CHF and chronic medications such as lasix and digoxin are helpful. Other clinical indicators suggestive of CHF include renal failure having recently missed dialysis, worsening of dyspnea while lying flat, hypertension, lower extremity swelling, neck vein distention, rales and/or wheezing heard in the lung fields, pink frothy sputum, and absence of fever and green or yellow productive cough.

PRACTICE: Patients with dyspnea and clinical suspicion of CHF:

1. Assist patient to sitting or upright position
2. Administer oxygen via nasal cannula, non-rebreather mask, or ventilatory assistance with BVM as necessary based on clinical severity
3. Attach cardiac monitor
4. Establish IV access
5. Administer nebulized albuterol if wheezing is present
6. Consider CPAP for severe respiratory distress (see separate CPAP protocol)

7. Administer sublingual nitroglycerin if SBP > 110; may repeat every 5 minutes to a total of 3 doses as long as SBP remains > 110; avoid NTG if Viagra, Levitra, or Cialis has been taken within the past 12 hours
8. Administer Lasix if SBP > 110:
 A) Lasix 80mg IV for patients maintained on chronic Lasix
 B) Lasix 40mg IV for patients not maintained on chronic Lasix
9. Assess response to therapy

CONTACT MEDICAL CONTROL

10. Consider Morphine 2-6mg IV in titrated doses of 2mg administered every 5 minutes as long as SBP remains > 110
11. If SBP is < 100, refer to shock protocol and consider Dopamine

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator
PURPOSE: To establish uniform guidelines for treatments of patients with exacerbations of asthma and/or croup.

POLICY: Almost all truly asthmatic patients will have a previous diagnosis of asthma. Conversely, croup is an episodic respiratory infection seen in young children characterized by fever, respiratory congestion, respiratory distress, a “croupy” barking cough, wheezing, and often respiratory stridor.

PRACTICE: Patients with respiratory distress and clinical suspicion of asthma or croup:

1. Administer oxygen via nasal cannula or non-rebreather mask, based on clinical severity, while preparing medications for use
2. Attach cardiac monitor
3. Obtain pulse oximetry monitoring
4. Administer nebulized Albuterol treatment
5. Obtain IV access
6. If dyspnea and/or wheezing persist after first albuterol treatment:
 A) Repeat nebulized Albuterol treatment
 B) Administer Solu-Medrol 125mg IV (2mg/kg for pediatric patients) (or IM if IV access is unable to be obtained)
7. For patients with severe respiratory distress (altered LOC, inability to cooperate with nebulizer treatment, marked accessory muscle use, minimal or absent lung sounds, and/or pulse oximetry readings of < 90% despite supplemental oxygen):
 A) Administer Epinephrine 1:1000 0.3cc IM or SQ if:
 1. Patient age < 50 years
 2. No history or cardiac disease
 3. SBP < 160
 CONTACT MEDICAL CONTROL
8. For patients with severe respiratory distress as in # 7 above, consider Magnesium Sulfate 2g IV diluted in 10cc NS over 3-5 minutes as tolerated (may cause flushing, localized burning at infusion site, and nausea). Slow the infusion rate as necessary.
9. For patients with croup in severe respiratory distress (marked tachypnea, accessory muscle use, nasal flaring, and INSPIRATORY STRIDOR, consider nebulized Epinephrine 5cc of 1:1000 concentration administered via nebulizer.
PURPOSE: To establish guidelines for patients with respiratory distress and clinical suspicion of pneumonia.

POLICY: Pneumonia is commonly encountered in the prehospital arena, especially in elderly and nursing home patients. While sometimes clinically similar to CHF, distinction between CHF and pneumonia is important, as some therapies for CHF are detrimental to patients with pneumonia. This distinction is sometimes difficult, and the two conditions can coexist at times. Pneumonia patients will often have fever, respiratory congestion, wheezing, rales, hypotension, and a recent history of respiratory congestion and cough productive of colored sputum or hemoptysis.

PRACTICE:

1. Patient assessment, noting respiratory distress, skin temperature, rales, respiratory congestion, and/or wheezing
2. Obtain pulse oximetry
3. Oxygen administration via nasal cannula or non-rebreather mask based on the patient’s clinical severity
4. Secure airway with ETT or King LT placement as necessary
5. Obtain temperature if clinical condition permits
6. Obtain IV access; administer 250-500cc bolus of NS or LR if SBP < 100
7. Administer nebulized albuterol treatment if wheezing is present
8. Avoid nitroglycerin and lasix if pneumonia is clinically suspected

CONTACT MEDICAL CONTROL
PURPOSE: To establish guidelines for the administration of continuous positive airway pressure support for patients in respiratory distress and incipient respiratory failure from congestive heart failure or COPD

PRACTICE:
1. Consider CPAP for patients either in severe respiratory distress or moderate respiratory distress failing to improve with appropriate therapy for CHF or COPD
2. Patients must be alert and able to maintain and protect a patent airway
3. Respiratory support via CPAP is administered in addition to medications, which are the mainstay of therapy
4. Contraindications to CPAP:
 1. Age less than 8 years
 2. Unable to maintain & protect a patent airway
 3. Decreased level of consciousness
 4. Systolic BP < 90
 5. Facial trauma/burns/surgery prohibiting airtight mask seal
 6. Suspicion of pneumothorax
 7. Patients with a tracheostomy
 8. Inability to tolerate CPAP
5. Initial CPAP setting for patients with CHF and COPD is 5cmH2O (15 LPM); this may be titrated up to a maximum of 10cmH2O (25LPM) at 5LPM increments every 5 minutes if tolerated and lower settings are poorly efficacious
6. Improvement should be noted within minutes; frequent monitoring of BP, respiratory rate, and level of consciousness are crucial
7. Do not discontinue CPAP once initiated unless the patient clinically worsens or is not tolerated by the patient; be prepared for BVM assistance and/or intubation in these cases

Oxygen flow rate/pressure support conversions:
 15 LPM = 5cm H2O
 20 LPM = 7.5cm H2O
 25 LPM = 20cm H2O
PURPOSE: To develop treatment guidelines for patients exhibiting signs of nontraumatic shock

POLICY: Shock can result from many causes or syndromes, including cardiogenic, anaphylactic, neurogenic, hypovolemic, and drug overdose. Identification of a precipitating cause, if possible, is important because some syndromes (i.e., anaphylactic) have specific therapies. Whatever the cause, patients will exhibit signs of inadequate end-organ perfusion such as alterations in level of consciousness, thready or absent peripheral pulses, skin pallor and diaphoresis, and tachycardia.

POLICY:

1. For anaphylactic shock follow the appropriate protocol
2. Assess patient for probable cause
3. Assess ventilatory adequacy and support as needed with assisted ventilations and/or airway control with ETT or King LT placement
4. Administer supplemental oxygen via non-rebreather mask if ventilatory drive is adequate
5. Lie patient supine if tolerated and keep warm
6. Attach cardiac monitor; obtain 12-lead EKG if ischemia is suspected
7. Obtain fingerstick glucose if any alteration in mental status is present
8. Obtain IV access with one or two IV lines and administer 500-1000cc fluid bolus of NS if SBP < 100
9. Rapid transport

CONTACT MEDICAL CONTROL

10. If SBP < 100 persists despite 1000cc fluid bolus, consider dopamine infusion at 10-20mcg/kg/min and titrate to keep SBP > 100
PURPOSE: To establish guidelines for resuscitation of patients in cardiac arrest, non-initiation of resuscitation in appropriate scenarios, and termination of futile resuscitation in the field

POLICY: In general, in the absence of signs of irreversible death (rigor mortis, lividity, cold body temperature, tissue decomposition, signs of injury incompatible with life such as decapitation, incineration, or massive crush injury) or the presence of a valid signed DNR order, all arrested patients should have resuscitation initiated. Patients with suspected hypothermia, barbiturate overdose, or electrocution should have full resuscitation unless signs of irreversible death, as noted above, are present. Patients should be resuscitated to completion (either return of spontaneous circulation or decision to terminate resuscitation) in the field, with emergency transport with CPR in progress only undertaken for rare clinical conditions (see GUIDELINES FOR TERMINATION OF RESUSCITATION).

PRACTICE:
1. Determine history from relatives or bystanders when possible and estimate down-time
2. Initiate CPR with focus on effective compressions with minimization of interruptions in compressions, attaching LUCAS device as soon as feasible. 30:2 CPR with BVM attached to high flow O2 should be administered.
3. Administer ventilations with 100% oxygen via BVM at rate of 6/min (1 breath every 10 seconds) utilizing airway adjuncts as needed. Use caution not to ventilate excessively thus causing increased intrathoracic pressure and reducing venous return.
4. Attach cardiac monitor or AED and interpret rhythm; follow appropriate dysrhythmia protocol
5. Obtain IV access; if IV access is unable to be established quickly, establish IO access using approved device.
6. Obtain definitive airway control with ET or King LT placement without interrupting compressions. Use caution not to allow advanced airway procedures to distract from effective BLS care.
7. If return of spontaneous circulation (ROSC) is achieved, assess condition and follow appropriate protocol for the patient’s post-arrest condition (i.e., bradycardia, hypotension, etc.)
8. If resuscitation efforts continue to be unsuccessful, contact medical control for termination of resuscitation (see GUIDELINES FOR TERMINATION OF RESUSCITATION)
PURPOSE: To define criteria to define medical futility and when to terminate field resuscitative efforts when resuscitation has not been effective

POLICY:

1. Multiple studies demonstrate that in cases of adult normothermic nontraumatic cardiac arrest, the inability to restore a spontaneous pulse within 20-30 minutes of ACLS is uniformly a determinant of mortality.
2. In-hospital resuscitation provides no benefit for patients who have failed ACLS resuscitation in the field.
3. Continued resuscitation of dead patients is medically futile.
4. Resuscitation attempts performed during emergency transport are predominantly ineffective, as compared to resuscitative attempts provided on-scene.
5. Emergency transport is dangerous to the transporting ambulance & crew, surrounding vehicles, and the public at large, and is associated with an alarming number of traffic accidents.
6. Therefore, limiting continued resuscitation and emergency transport of patients that have failed appropriate resuscitative efforts in the field is ethically equivalent with respect to medical futility, and limits futile emergency transports which are dangerous to providers and the general public alike.
7. Notable exceptions are patients with hypothermia, barbiturate overdose, and electrocution, which should be transported with full resuscitative measures unless there are signs of irreversible death or injuries present which are incompatible with life.
8. Attempts at transport should be delayed until signs of response to resuscitation appear (recovery of pulse and/or blood pressure, or persistent or recurrent VF/VT.) Otherwise, resuscitate patients to completion on-scene.
9. Consider early transport in crowded public places, scene situations that place personnel in jeopardy, family member conflict and/or inability to communicate, persistent VF/VT, or patients that display neurologic signs of life.
10. Consider family’s wishes; if family strongly wishes resuscitative efforts to continue, non-emergency transport is to be used.
11. Emergency transportation that places the crew and public at risk will not be performed for continued futile resuscitation of patients who have failed to respond to the measures below.
12. Patients who have had resuscitation terminated should be considered unattended deaths, and law enforcement notified. Once the body has been released from the scene, non-emergency transport to the hospital (as in routine signal 12 transports) for pronouncement should follow. Airways, IV catheters, and other resuscitative devices should be left in place.
PRACTICE: A paramedic may terminate resuscitation in the field provided the following criteria are met:

1. CPR with ALS measures have been performed for at least 20 minutes without a return of spontaneous pulse or respiration, AND
2. Airway control with ET intubation (with confirmation of placement) or ETC placement has been obtained, AND
3. IV or IO access has been obtained, with rhythm-appropriate medications and countershocks for VF/VT administered according to appropriate protocols, AND
4. Persistent asystole or agonal PEA persists without apparent reversible cause, AND
5. Termination order is received from on-line medical control physician. Termination decision should be a consensus agreement between the treating paramedic and the medical control physician.
PURPOSE: To establish uniform guidelines for treatment of patients with bradycardia

POLICY: Indicated patients with a heart rate < 60

PRACTICE:

1. Assess for signs and/or symptoms relative to the bradycardia (hypotension, dyspnea, altered mental status, chest pain, other signs of shock)
2. Attach cardiac monitor
3. Administer oxygen via nasal cannula or non-rebreather mask based on patient’s clinical severity
4. If perfusion is adequate and signs/symptoms of shock are not present, continue to monitor and transport
5. For symptomatic patients with SBP < 100, proceed with the following interventions:
 A) Atropine 0.5-1mg IV; may be repeated in 5 minute intervals to a total of 3mg
 B) Initiate transcutaneous pacing for severe clinical instability

CONTACT MEDICAL CONTROL

6. Consider dopamine infusion at 5-20mcg/kg/min for severe symptoms unresponsive to atropine and/or transcutaneous pacing
7. Consider epinephrine infusion 2-10mcg/min for severe symptoms unresponsive to atropine, dopamine, and/or transcutaneous pacing
8. **NOTE** – Severely symptomatic patients nearing cardiac arrest may benefit from a “kitchen sink” approach in which all the above therapies are administered simultaneously. Contact medical control for guidance.
PURPOSE: To establish uniform guidelines for treatment of patients with PSVT.

POLICY: SVT is a nonspecific term used to describe tachycardia arising from the AV node or above, and may include sinus tachycardia, reentry PSVT, and uncontrolled atrial fibrillation and flutter. Distinguishing between these rhythms can be difficult at high heart rates. In the presence of symptoms, differentiation between rhythms is relatively unimportant.

PRACTICE: Indicated patients with narrow-complex tachycardia with heart rate > 160:

1. Administer oxygen via nasal cannula or non-rebreather mask based on patient’s clinical severity.
2. Attach cardiac monitor.
3. Obtain IV access.
4. Obtain pulse oximetry reading.
5. Obtain 12-lead EKG if clinical stability permits (will assist in detailed rhythm analysis and rate-associated ischemic change).
6. If patient exhibits signs of instability at any time during assessment and treatment (altered mental status, severe chest pain, hypotension, or other signs of shock,) go immediately to #10 below.
7. If patient is stable, attempt vagal maneuver with Valsalva.
8. If unsuccessful, administer adenosine 6mg rapid IV push & monitor for effect; record monitor strip.
9. If unsuccessful, administer adenosine 12mg rapid IV push & monitor for effect; record monitor strip; may repeat once if initial 12mg dose is ineffective.
10. Perform synchronized cardioversion at manufacturer’s recommended energy level IF clinically unstable as in #6 above.

CONTACT MEDICAL CONTROL

11. Consider amiodarone 150mg IV over 10 minutes.
12. Consider sedation and analgesia with versed 1-2mg IV and morphine 2-4mg IV if SBP>100 and clinical situation allow.
13. Consider repeat synchronized cardioversion with escalating energy level as recommended by manufacturer if initial cardioversion(s) are unsuccessful.
14. If cardiac arrest develops, follow appropriate protocol.
PURPOSE: To establish uniform guidelines for the treatment of patients with ventricular tachycardia, ventricular ectopy, and wide-complex tachycardia of unknown etiology

PRACTICE: Indicated patients presenting with ventricular tachycardia with a pulse, wide-complex tachycardia of unknown etiology, polymorphic ventricular tachycardia, or symptomatic ventricular ectopy (frequent PVCs, couplets, or runs of nonsustained VT associated with chest pain, dyspnea, altered mental status, or hypotension)

1. Rapid assessment; if patient develops unstable symptoms at any time during assessment or treatment (hypotension, altered mental status, severe chest pain, or other signs of shock), proceed immediately to # 7 below
2. Administer oxygen via non-rebreather mask
3. Obtain pulse oximetry reading
4. Obtain IV access, with IV fluid bolus or NS 250-500cc if SBP<100
5. Attach cardiac monitor; obtain 12-lead EKG if clinical stability permits
6. Obtain fingerstick glucose level if any alteration in mental status is present
7. If clinical instability is present (SBP<100, severe chest pain, altered mental status, or other signs of shock), perform synchronized cardioversion at manufacturer’s recommended energy level

CONTACT MEDICAL CONTROL

8. If patient is clinically stable, consider amiodarone 150mg IV infusion over 10 minutes; may repeat once if patient remains clinically stable and first infusion has been ineffective; initiate infusion at 1mg/min
9. Consider analgesia and sedation with morphine 2-4mg IV and versed 1-2mg IV for synchronized cardioversion as SBP and clinical condition allow
10. Patients with POLYMORPHIC VT (Torsades de Pointes): if clinically stable as above, administer magnesium sulfate 2g IV over 5 minutes. If clinically unstable, move to immediate unsynchronized cardioversion at manufacturer’s recommended energy level
11. If cardiac arrest occurs, follow appropriate protocol

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator
PURPOSE: To develop uniform guidelines for attempted resuscitation for patients suffering asystolic cardiac arrest.

POLICY: The survival rate for asystolic cardiac arrest is dismal, and Asystole most often represents a confirmation of death rather than a dysrhythmia to be treated. Any hope for resuscitation rests with high-quality CPR and rapid identification and treatment of a reversible precipitating cause.

PRACTICE: For patients in asystolic cardiac arrest:

1. CPR with focus on minimization of interruption of compressions; note time of initiation of resuscitation
2. Confirm Asystole in an additional telemetry lead
3. Initiate CPR with focus on effective compressions with minimization of interruptions in compressions, attaching LUCAS device as soon as feasible. 30:2 CPR with BVM attached to high flow O2 should be administered utilizing airway adjuncts as needed.
4. IV or IO access with 500-1000cc fluid bolus with NS
5. Administer Epinephrine 1mg IV or IO every 3-5 minutes as soon as access is obtained
6. Airway control with ET or King LT placement and provide ventilations at a rate of 6 breaths per minute. Use caution not to ventilate excessively thus causing increased intrathoracic pressure and reducing venous return.
7. Consider Sodium Bicarbonate 1 mEq/kg IV or IO

CONTACT MEDICAL CONTROL

8. Consider termination of resuscitation if Asystole or agonal PEA persists
PURPOSE: To establish guidelines for treatment of patients in PEA cardiac arrest

POLICY: PEA represents a potentially salvageable condition, especially if the rhythm is narrow and/or rapid. Focus assessment on rapid identification of a precipitating and potentially reversible cause such as hypoxia, hypovolemia, hypothermia, acidosis, overdose, or tension pneumothorax.

PRACTICE: For patients in PEA cardiac arrest:

1. Rapid assessment for precipitating cause; note time of initiation of resuscitation
2. Initiate CPR with focus on effective compressions with minimization of interruptions in compressions, attaching LUCAS device as soon as feasible. 30:2 CPR with BVM attached to high flow O2 should be administered.
3. IV or IO access with 500-1000cc fluid bolus with NS
4. Administer Epinephrine 1mg IV or IO every 3-5 minutes as soon as access is obtained
5. Airway control with ET or King LT placement and provide ventilations at a rate of 6 breaths per minute. Use caution not to ventilate excessively thus causing increased intrathoracic pressure and reducing venous return.
6. Obtain blood glucose reading and administer D50 25g IV or IO if glucose level is <70
7. For suspicion of tension pneumothorax (absent breath sounds despite adequate airway placement), perform needle decompression
8. In patients with end stage renal disease, or when hyperkalemia is suspected, Administer 1g Calcium Chloride IV/IO and 1mEq/kg Sodium Bicarbonate

CONTACT MEDICAL CONTROL

9. Consider Sodium Bicarbonate 1mEq/kg IV or IO
10. Consider termination of resuscitation if asystole or agonal (<40) PEA persists
PURPOSE: To establish guidelines for resuscitation of patients with Ventricular Fibrillation and Pulseless Ventricular Tachycardia cardiac arrest

POLICY: The most crucial interventions during VF/VT arrest are CPR with minimal interruption of compressions and defibrillation as soon as it can be accomplished. In the prehospital setting, unless the arrest is witnessed by the EMS crew, defibrillation is more likely to reestablish a perfusing rhythm if it is preceded by several cycles of CPR. Current recommendations are to provide 5 cycles of compressions before attempting defibrillation (unless the arrest is witnessed), minimize interruptions in compressions by limiting pulse & rhythm checks between shocks, and delivering a single defibrillation followed immediately by resuming compressions for an additional 5 cycles before re-checking rhythm and pulse.

PRACTICE: For patients in VF or VT cardiac arrest (protocol assumes patient remains in VF or pulseless VT):

1. Immediate CPR with focus on minimization of interruptions in compressions; deliver 5 cycles of compressions (about 2 minutes) while attaching monitor/AED; note time of initiation of resuscitation. Attach LUCAS device as soon as feasible
2. Defibrillate ONCE at manufacturer’s recommended energy level for biphasic defibrillators or 200 joules (360 joules for monophasic defibrillators) and resume CPR immediately for 5 cycles
3. Obtain IV or IO access quickly. Minimize IV attempts and move to IO as needed.
4. Administer Epinephrine 1mg IV every 3-5 minutes as soon as access is obtained
5. Secure airway with ET or King LT placement and provide ventilations at a rate of 6 breaths per minute (1 breath every 10 seconds). Use caution not to ventilate excessively thus causing increased intrathoracic pressure and reducing venous return.
6. Defibrillate once at energy level noted above and immediately resume CPR for 5 cycles
7. Administer Amiodarone 300mg IV or IO; give additional dose of 150mg IV or IO in 3-5 minutes if VF/VT persists
8. Defibrillate once as above
9. Consider Lidocaine 1.5mg/kg (150mg standard dose) IV or IO if VF/VT persist after Amiodarone has been administered; may repeat same dose once in 3-5 minutes if VF/VT
10. Defibrillate once as above
12. Consider magnesium sulfate 2g IV or IO
13. Consider sodium bicarbonate 1 ampule IV or IO
14. Consider transport for refractory VF/VT
15. For patients who achieve return of spontaneous circulation (ROSC), obtain 12-Lead to rule out STEMI as underlying cause. Post-arrest management should focus on optimizing perfusion and oxygenation.

CONTACT MEDICAL CONTROL

16. Consider antiarrhythmic and/or vasopressor infusions as needed.
PURPOSE: To establish uniform guidelines for the assessment and treatment of patients presenting with chest pain suspected to be cardiac in origin.

POLICY: Chest pain may be a symptom of cardiac ischemia or infarction, or may result from a myriad of other causes. Other important conditions that may present with chest pain are pulmonary embolism, pneumonia, thoracic aortic dissection, pneumothorax, dysrhythmias, and gastrointestinal disorders. The patient’s history, character of symptoms, physical exam findings, EKG findings, and risk factors (i.e., recent surgery, illegal drug use, diabetes) are important assessment points to guide assessment and treatment.

PRACTICE: For patients with chest pain of suspected cardiac origin:

1. Targeted assessment- OPQRST
 O-Onset of signs & symptoms
 P- Provocation
 Q-Quality of pain
 R-Radiation of pain
 S-Severity of pain
 T-Time of duration of pain

 Document Pain Scale, 1-10, Pre and Post medication Administration, and upon arrival at receiving facility

2. Administer supplemental oxygen via nasal cannula or non-rebreather mask based on the patient’s clinical severity

3. Attach cardiac monitor

4. Obtain IV access

5. Obtain pulse oximetry reading

6. Obtain 12-lead EKG and transmit to receiving facility

 *** If EKG suggests STEMI (ST segment elevation in 2 contiguous leads), transmit EKG As Soon As Possible, consider situation a “Load and Go” and transport immediately, perform interventions during transport and notify receiving facility of STEMI Alert***

Preston A. Ball, M.D., Medical Director

Capt. Bobby Ogletree, EMS Coordinator
AEMT: While awaiting arrival of a Paramedic, and chest pain is suspected to be cardiac in origin.
--Transmit and confirm medical control received the transmitted 12-lead
--Requested orders for aspirin and nitroglycerin
--If orders are received, proceed with #7 and #8

7. Administer 4 Baby Aspirin (324mg) by mouth

 DO NOT administer Baby Aspirin to patients with Known Aspirin Allergy

 DO NOT administer Baby Aspirin to patients with Active GI Bleeding

 BABY ASPIRIN MAY BE GIVEN TO PATIENTS CURRENTLY ON ANTICOAGULANT THERAPY

8. If Systolic BP > 110 administer Nitroglycerin 0.4 sublingual tablet; may repeat at 5 minute intervals for a total of 3 doses while maintaining SBP > 110. **Recheck SBP before each additional dose and withhold if SBP < 110**

 NOTE: -Administration of nitroglycerin is contraindicated if the patient has taken Viagra, Cialis, or Levitra within the previous 12 hours.

 -For Patients that have taken the maximum dosage of Nitroglycerin prior to EMS arrival (3 over 10 minutes), HCFS should only administer 1 Nitroglycerin.

--

CONTACT MEDICAL CONTROL
10. Consider Morphine 2-10mg IV in 2mg increments every 5 minutes for patients with persistent chest pain despite nitroglycerin or in those patients in whom Nitroglycerin is contraindicated

 DO NOT administer Morphine to patients with known allergy to Morphine

11. For STEMI confirmed by medical control after EKG transmission:
 A) Administer Unfractionated Heparin 60 units/kg IV push (max 4000 units)
 B) Administer Ticagrelor (Brilinta) 90mg x 2 PO (180mg)
 - Chew or Crush

 DO NOT administer Heparin to patients with known allergy to Heparin
 DO NOT administer Brilinta to patients with known allergy to Brilinta
 DO NOT administer Heparin or Brilinta to patients with active or recent bleeding complications (GI/CNS)

12. Paramedic - For nausea administer Zofran 4mg IV/IO/IM

13. Time permitting, consider second IV/INT.
PURPOSE: To establish guidelines for treatment of patients with atrial fibrillation and/or atrial flutter.

POLICY: Atrial fibrillation/flutter can be an acute or chronic condition, and patients are typically either stable, symptomatic, or unstable. Emergent therapy is necessary only in symptomatic and unstable patients, with intensity of treatment based on their degree of symptomatology and clinical stability.

PRACTICE: For patients with atrial fibrillation/flutter:

1. Place on supplemental oxygen appropriate for clinical condition, establish IV access, and obtain 12-lead EKG.
2. For asymptomatic patients with heart rate <120, observe & transport
3. Symptomatic patients may exhibit varying degrees of chest pain, shortness of breath, decreased level of consciousness, hypotension, pulmonary congestion/CHF, or ischemic changes on the 12-lead EKG.
4. Determination of symptomatic vs. unstable is a judgment call on your part and based on your overall clinical assessment of the patient; symptomatic patients may be truly symptomatic but deemed stable enough for a trial of rate-controlling medication as opposed to immediate cardioversion. Again, this is a judgment call on your part, and medical control can be used for guidance.
5. Determine if Wolff-Parkinson-White or pre-excitation changes are noted on the 12-lead EKG
6. For unstable patients:
 a. Set up for immediate cardioversion
 b. Consider sedation and analgesia with midazolam 1-2mg IV and morphine 2-4mg IV if clinical situation allows
 c. Synchronized cardiovert at manufacturer’s recommended energy level
 d. Consider repeat cardioversion at escalating energy levels if unsuccessful
 e. Emergency transport

*** CONTACT MEDICAL CONTROL ***

7. For symptomatic but stable patients without WPW or pre-excitation:
 a. Administer diltiazem .25mg/kg (20 mg) slow IV push over 2 minutes
 b. If inadequate rate control after 5-10 minutes, rebolus .35mg/kg (25mg) slow IV push over 2 minutes
 c. If inadequate rate control after 5-10 minutes, consider amiodarone 150mg IV over 10 minutes
 d. If patient becomes unstable at any point, proceed with immediate cardioversion as in no. 6 above
8. For **symptomatic patients with WPW/pre-excitation:**
 a. Administer amiodarone 150mg IV over 10 minutes
 b. If inadequate rate or rhythm control after 5-10 minutes after completing the infusion, consider additional 150mg IV over 10 minutes
 c. If rate control is successful and transport time allows, initiate amiodarone infusion 1mg/minute
 d. If patient becomes unstable at any point, proceed with immediate cardioversion as in no. 6 above
Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator

Hall County Fire Services

MEDICAL PROTOCOLS AND STANDING ORDERS

GUIDELINES FOR ALTERED MENTAL STATUS

HCFS Approved: 4/1/06 Revised: 2/1/16 Effective: 4/1/06 Page 1 of 1

PURPOSE: To establish guidelines for assessment and treatment of patients with altered mental status

POLICY: Alterations in mental status can be a primary disorder, but is frequently seen in association with other disorders such as trauma, overdose or intoxication, respiratory disorders, renal failure, infection, diabetic emergencies, hypertensive crises, metabolic abnormalities, shock, and post-seizure states. Assessment should focus on a likely cause.

PRACTICE: The approach to the patient with altered mental status:

1. Evaluate level of consciousness using the AVPU method; note pupillary and extremity motor strength/sensation findings
2. If assessment reveals a specific cause, (i.e. head injury, overdose, hypoglycemia, shock, hypertensive crisis, etc.) follow the appropriate protocol
3. Evaluate ventilatory adequacy and assist ventilations as needed
4. Administer oxygen by nasal cannula or non-rebreather based on the patient’s clinical Severity
5. Obtain IV access; administer 250-500cc fluid bolus of NS if SBP<100
6. Obtain fingerstick blood glucose level
7. Obtain pulse oximetry reading
8. Attach cardiac monitor
9. Consider Narcan
 0.4-2mg IV OR
 2mg IN (1mg each nostril)

AEMT MUST CONTACT MEDICAL CONTROL AND RECEIVE ORDERS
If Intravenous route chosen, start with low doses and titrate to reversal of respiratory depression and avoid complete reversal/awakening as this may precipitate acute narcotic withdrawal and combativeness

--

CONTACT MEDICAL CONTROL

10. Consider Thiamine 100mg IV or IM if suspect chronic alcoholism or intoxication with hypoglycemia

--

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator
MEDICAL PROTOCOLS AND STANDING ORDERS

GUIDELINES FOR EXCITED DELIRIUM

PURPOSE: To establish guidelines for treatment of patients with excited delirium, also known as agitated delirium

POLICY: Excited delirium is a medical emergency, often disguised as a law enforcement problem, and should be suspected in agitated patients exhibiting some or all of the following:

1. Violent aggressive behavior
2. Known or suspected drug/stimulant abuse
3. Confusion, disorientation, paranoia
4. Diaphoresis
5. Hyperthermia

PRACTICE: For patients with presumed excited delirium:

1. **Scene safety is paramount; do not approach without adequate law enforcement assistance**
2. **Continued ongoing vigilant observation for deterioration and cardiac arrest is vitally important throughout assessment and treatment, as these patients can suffer cardiac arrest precipitously and without warning**
3. Attempt calm verbal reassurance and offer of care
4. With adequate personnel, restrain patient to limit ongoing hypermetabolic state and muscular activity
 a. Use least amount of physical restraint necessary to subdue patient
 b. Best approach will often be secured to backboard (for portability of patient) with straps and multiple strips of medical grade tape
5. Administer oxygen by best available means
6. Apply pulse oximeter and cardiac monitor
7. Determine serum glucose level
8. Determine body temperature
9. Initiate IV or IO access if possible, & rapidly infuse 1-2 liters of NS; may require delay until adequate sedation
10. Sedate patient to reduce delirious state:
 a. Administer versed 2mg IV **OR**
 b. Administer versed 5mg IM
11. Cool hyperthermic patients by removing clothing, cool water, fanning, and cold packs to neck, groin, axillae
12. Rapid transport

CONTACT MEDICAL CONTROL

13. May require repeated doses of versed for continued agitation
14. Consider sodium bicarbonate 1 amp for wide-complex tachycardia
15. Consider calcium chloride 1 amp for wide-complex tachycardia
PURPOSE: To establish treatment guidelines for patients with seizures

PRACTICE: For patients with active seizures/convulsions:

1. Assess, protect patient from harm or injury
2. Monitor airway patency with positioning, modified jaw thrust, nasal airway placement, and suctioning as appropriate
3. Administer oxygen via non-rebreather mask
4. Attach cardiac monitor
5. Obtain IV access
6. Obtain fingerstick blood glucose level; administer D50 1 ampule if < 60
7. Administer lorazepam 1mg IV (0.05mg/kg for pediatric patients up to 1mg per dose); may repeat at 5 minute intervals to total dose of 3mg if patient continues to seize
 OR
 Midazolam 10mg IN (0.2mg/kg for pediatric patients up to 10mg) if IV unable to be rapidly established

CONTACT MEDICAL CONTROL

For patients that continue to seize/convulse despite the above interventions:

8. Consider midazolam 2.5mg IV (0.05mg/kg for pediatric patients up to 2.5mg); may repeat in 5 minutes if ineffective
9. Consider midazolam 5mg IM (0.2mg/kg for pediatric patients up to 5mg) for patients in whom IV access is unable to be obtained; may repeat in 10 minutes if ineffective
10. Continue to monitor ventilatory adequacy and support with assisted ventilations as necessary
PURPOSE: To establish guidelines for evaluation and management of patients suspected of having acute stroke

POLICY: The goal of this guideline is to facilitate early recognition of patients with stroke presentations and triage them to the appropriate facility. Stroke treatment has rapidly progressed in recent years, and treatment options are now more broad spectrum than ever before. Pre-hospital focus of importance in acute stroke is rapid identification and transport to an APPROPRIATE facility, while minimizing complications such as hypotension, hypoxia, and aspiration.

PRACTICE: For patients suspected of having acute stroke:

1. Complete initial assessment. Assess ABC’s and intervene as necessary
2. Perform complete set of vital signs to include glucose, temperature, and 12-lead
3. Administer oxygen therapy as needed to maintain oxygen saturations of 94%
4. Rule out stroke mimics such as seizures, hypoglycemia, sepsis, head injury, overdose, etc. and refer to the appropriate protocol.
5. Perform and document the Cincinnati Stroke Scale (CSS):
 - **Facial Droop**
 Have patient look straight ahead and smile.
 Normal: Both sides of face move equally
 Abnormal: Unequal movement
 - **Arm Drift**
 Have patient close eyes, lift/hold both arms straight out for 10 seconds
 Normal: Both arms move the same, or both arms do not move at all
 Abnormal: One arm does not move, or one arm drifts down when compared to the other arm
 - **Speech**
 Have patient repeat: “You can’t teach an old dog, new tricks”
 Normal: Patient uses correct words with no slurring
 Abnormal: Patient slurs words, uses wrong words, or is unable to speak
6. If one of these is positive and its new onset, chances of stroke are high
7. **If the patient presents with a positive CSS, proceed to FAST-ED app**
8. Once you have progressed through the app, it will make the appropriate receiving facility to transport the patient to, based off of the assessment. It will state transport to the “Closest Stroke Center” or the “Closest Comprehensive Stroke Center”.

9. **Closest Stroke Center**: Northeast Georgia Medical Center – Gainesville
Closest Comprehensive Center: Grady Memorial Hospital

10. Limit scene time to 15 minutes. Document appropriately for scene delays.
11. Mode of transport (Ground or Air) should be decided strictly on time measures. Ask yourself, which mode of transportation will deliver the patient to definitive care the fastest. Time of day, weather, location, traffic, should all be considered when making determination. If air transport is being considered, request a stand by early in the evolution of the call. Lift time, response, scene time, and transport time should be considered as part of total time for air transport.
12. If there are ABC concerns or great concern for deterioration, consider transport to closest stroke center regardless of FAST-ED recommendation.
13. If transporting by ground, emergent transport should be utilized up to 24 hours post onset of symptoms. Extended TPA windows and other treatments are now available with good outcomes reported up to 24 hours post onset of symptoms.
14. **Be sure to contact receiving facility early to activate “Stroke Alert”**.
15. If there is concern with HTN, contact medical control. *Use caution if considering treating, due to severe complications with hypotension*
16. Contact medical control for further orders or guidance as necessary.

PEARLS

- 85% of strokes are ischemic in nature. It is difficult to tell the difference between ischemic and hemorrhagic in the field. However history is key.
- Assess accurately and thoroughly. Follow FAST-ED carefully.
- Obtain medications list. Be on lookout for blood thinners
- What is normal for the patient? Is this new onset or is this their baseline?
- How well do they get around? Are they self-caring or require assistance?
- When was their last known normal time? Document in military time.
- Wake up strokes happen frequently and are just as urgent
- Have family member accompany you to the hospital. If this is not possible, obtain contact number and stress importance of them being able to be reached. Family will be the best historians for the receiving facility and will be able to help with treatment decisions.
- Obtain large bore (preferably 18 gauge) INT in Forearm or AC for CT
- Keep head raised to 30-45 angle if possible

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator

Hall County Fire Services
Table of Contents
PURPOSE: To establish guidelines for management of patients with insect envenomation’s, allergic reactions, and anaphylaxis

POLICY: Allergic reactions vary in severity from mild urticarial rash to fatal anaphylaxis; treatment is based on severity, with epinephrine indicated in cases of respiratory distress, wheezing and/or stridor, orofacial edema, or hypotension.

PRACTICE: For patients with insect envenomation or generalized allergic reaction with urticaria (hives)

1. Administer Oxygen via nasal cannula or non-rebreather mask based on the clinical severity of the patient.
2. Assess for ventilatory adequacy and support with assisted ventilations as needed
3. Attach cardiac monitor
4. Obtain IV access, with 500-1000cc fluid bolus of NS or LR if SBP<100; initiate 2nd IV line with fluid bolus if severe shock/hypotension is present
5. Administer nebulized Albuterol treatment if respiratory distress, wheezing, or inspiratory stridor is present.
6. For patients with SEVERE REACTIONS including respiratory distress, wheezing and/or inspiratory stridor, orofacial edema, or hypotension:
 A) Administer Epinephrine (1:1000) 0.3cc IM (0.01cc/kg for pediatric patients up to 0.3cc)

7. Administer Benadryl 50mg IV (1mg/kg for pediatric patients)
8. Administer Solu-Medrol 125mg IV (2mg/kg for pediatric patients)

CONTACT MEDICAL CONTROL

The following interventions are reserved for extremely critical patients with ongoing anaphylactic shock unresponsive to the above measures:

9. Consider Epinephrine (1:10,000) 0.1-0.5mg slow IV for persistent hypotension and imminent airway compromise
10. Consider repeat Benadryl 50 mg IV
11. Consider Glucagon 2mg IV
12. Consider Epinephrine continuous infusion at 1-4 mcg/min and titrated to maintain SBP>100

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator
PURPOSE: To establish uniform guidelines for the assessment and management of patients with hypoglycemia.

POLICY: Hypoglycemia should be suspected in diabetic patients, any patient with an altered mental status, patients with seizures, and ill-appearing infants and children. Assessment of blood glucose level is quick, easy, very important, and should be done.

PRACTICE: For patients suspected to have hypoglycemia:

1. Assess/support ventilation as necessary
2. Administer oxygen via nasal cannula or non-rebreather mask based on the clinical severity of the patient
3. Attach cardiac monitor
4. Obtain fingerstick glucose level
5. Obtain pulse oximetry reading
6. Obtain IV access
7. For mildly symptomatic patients with blood glucose < 60 who have no airway or respiratory compromise and are able to swallow effectively:
 A) Administer 1-2 doses of oral glucose solution (insta-glucose)
 B) Assess clinical response to treatment; if patient deteriorates or does not tolerate the oral solution, proceed to #8
8. For symptomatic patients with blood glucose < 40:
 A) Administer 25 grams D50 (for adults)
9. For symptomatic patients with blood glucose < 40 in whom IV access is unable to be obtained:
 A) Administer Glucagon 1mg IM (0.1mg/kg up to 0.5mg IM for pediatric patients)
 B) Assess clinical response & repeat blood glucose level
 C) Assess clinical response & repeat blood glucose level

10. For symptomatic PEDIATRIC patients with blood glucose < 60:
 A) Infants < 6 months: 5cc/kg of D10 (2cc D50 in 10cc NS)
 B) Children 6 months – 2 years: 2cc/kg of D25 (10cc D50 in 10cc NS)
 C) Children > 2 years: 1cc/kg of D50 up to 1 ampule
 D) Assess clinical response & repeat blood glucose level

11. Transport
PURPOSE: To establish guidelines for assessment and management of patients with therapeutic or illicit substance overdose & exposure to toxic substances

POLICY: Overdose patients often have behavioral and/or psychiatric issues and may attempt to refuse treatment and/or transport. Patients with attempts at self harm and/or suicide or who are under the influence of mind-altering medications are not in possession of faculties that allow them to refuse care; once the HCFD has arrived on scene, we are responsible for their well-being and care, and patients must be transported to the hospital for care. Utilize law enforcement, physical restraints, and medical control as necessary.

PRACTICE:

1. Remove patient from toxic environment and assess; obtain history from family and/or bystanders and attempt to determine what medication/drug/toxin was taken
2. Assess ventilatory adequacy & assist as needed
3. Administer oxygen via nasal cannula or non-rebreather mask based on the clinical severity of the patient
4. Obtain IV access
5. Obtain pulse oximetry reading
6. Obtain fingerstick blood glucose level if any alteration in mental status is present
7. If patient is unconscious, refer to Altered Mental Status protocol
8. Do not induce vomiting
9. For patients with suspected opiate overdose, consider Narcan: ***AEMT MUST CONTACT MEDICAL CONTROL AND RECEIVE ORDERS***
 A. 0.4-2mg IV, or
 B. 2mg IN (1mg each nostril)

10. Consider Activated Charcoal 50g (1g/kg for pediatric patients up to 50g) orally for patients with ingested medication overdose in cooperative patients without respiratory depression or compromise.
11. Consider Sodium Bicarbonate 1 mEq/kg IV for patients with tricyclic antidepressant overdose who are tachycardic, hypotensive, seizing, or have depressed mental status
12. Consider Atropine 1-2mg IV for patients with insecticide exposure with symptomatic bradycardia, seizures, or pulmonary congestion.

CONTACT MEDICAL CONTROL

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator
PURPOSE: To develop treatment guidelines for patients with hypertensive crisis

POLICY: A hypertensive crisis is defined as a systolic blood pressure of 240 or greater and/or a diastolic blood pressure of 130 or higher. Signs and symptoms of hypertensive crisis include headache, nausea and/or vomiting, altered mental status, chest pain, severe dyspnea, stroke symptoms, seizures, and coma. Treatment involves a controlled reduction in blood pressure WITHOUT a precipitous drop, which can worsen end-organ damage.

PRACTICE: Patients with SBP 240 or greater, DBP 130 or greater, with any symptoms as noted above.

1. Assess ventilatory adequacy and support as needed.
2. Administer oxygen via nasal cannula or non-rebreather mask based on the clinical severity of the patient
3. Attach cardiac monitor
4. Obtain IV access
5. Obtain 12-lead EKG if chest pain is present
6. Obtain fingerstick blood glucose level if any alteration in mental status is present

CONTACT MEDICAL CONTROL

7. Consider Labetalol 10-20mg slow IV push; assess response
8. Consider Aspirin and Nitroglycerin per chest pain protocol IF no stroke symptoms or alteration in mental status is present
9. Consider Morphine 2-5mg IV if hypertension is accompanied by severe headache
PURPOSE: To develop treatment for victims of submersion injury

POLICY: All patients with submersion injury should be transported for evaluation as deterioration can occur despite a benign initial appearance. Important history to be gathered at the scene includes the length of submersion, any period of unconsciousness, any associated trauma, whether SCUBA equipment was being used, and any drug or alcohol use.

PRACTICE: For all victims of significant submersion incident

1. Assess ventilatory adequacy and support as needed
2. Suction solid and/or particulate matter from the airway but avoid attempts to clear all water from the airway; this delays definitive airway control and subsequent oxygenation and ventilation
3. Administer oxygen by nasal cannula or non-rebreather mask based on the clinical severity of the patient
4. Obtain IV access
5. Obtain pulse oximetry reading
6. Attach cardiac monitor
7. Obtain fingerstick blood glucose level if any alteration in mental status is present
8. Cardiac arrest and/or arrhythmia management per appropriate protocol
GUIDELINES FOR HEAT EXHAUSTION & HEAT STROKE

PURPOSE: To establish treatment guidelines for patients with heat exhaustion and/or heat stroke.

PRACTICE: For patients suffering from heat exhaustion (weakness, diaphoresis, muscle cramps) or heat stroke (altered mental status, hot & dry skin):

1. Assess ventilatory adequacy and support as needed
2. Remove patient from hot environment
3. May irrigate skin with tepid or cool water; avoid chilling
4. Administer oxygen via nasal cannula or non-rebreather mask based on the clinical severity of the patient
5. Obtain temperature
6. Attach cardiac monitor
7. Obtain fingerstick glucose level if any alteration in mental status is present
8. Obtain IV access and administer IV fluid bolus 500-1000cc of NS
9. Transport

CONTACT MEDICAL CONTROL
PURPOSE: To establish guidelines for treatment of patients with hypothermia and hypothermic cardiac arrest

POLICY: Hypothermia is defined as a body temperature < 95 degrees, & may result from exposure to a cold environment, metabolic illness, or infection. Resuscitation from cardiac arrest is sometimes possible even with profound hypothermia, and resuscitation should be initiated except in the following circumstances: cold water submersion of greater than one hour, obvious fatal injuries, frozen patients (i.e. with ice formation in the airway), and chest wall rigidity which impairs CPR

PRACTICE: For patients with suspected hypothermia:

1. Prolonged initial assessment for pulse and/or signs of life
2. Handle gently and remove patient from cold environment, prevent further heat loss, remove wet clothing, and cover with blankets
3. Administer heated oxygen via nasal cannula or non-rebreather mask based on the clinical severity of the patient
4. Assess ventilatory adequacy and support as needed
5. Obtain IV access
6. Attach cardiac monitor
7. Obtain pulse oximetry reading
8. Obtain fingerstick blood glucose level
9. Apply warm packs to groin and axilla; may wrap to prevent skin burns
10. If cardiac arrest is present:
 A) Handle gently
 B) Gentle airway control with ET or King LT placement
 C) CPR
 D) If VF/VT is present, a single defibrillation at manufacturer’s recommended energy level (360 joules for monophasic defibrillators) should be given. EMT-I and AEMT should follow AED’s recommendations and deliver up to one defibrillation.

 E) Administer a single dose of Epinephrine 1mg IV/IO or Vasopressin 40 units IV/IO
 F) If VF/VT is present and persists following defibrillation, administer a single dose of Amiodarone 300mg IV/IO

11. Transport

CONTACT MEDICAL CONTROL
PURPOSE: To establish treatment guidelines for patients with abdominal, back, or extremity pain NOT associated with trauma or injury

POLICY: Often this group of patients will not require emergent prehospital intervention. However, several severe disease processes can present as abdominal, back, and/or extremity pain; these include gastrointestinal surgical emergencies, myocardial infarction, ruptured or leaking abdominal aortic aneurysm, extremity ischemia, ectopic pregnancy, and kidney stones.

PRACTICE:

1. Assess & consider underlying causes as noted above
2. May establish IV access
3. Administer Zofran 4mg IV as needed for nausea and/or vomiting
 Patients not requiring additional ALS interventions or monitoring may be transported by EMT-A units after administration of Zofran at the discretion of the treating paramedic
4. Document distal extremity pulses
 ** ***CONTACT MEDICAL CONTROL***

5. Consider Toradol 30mg IV (15mg IV if age > 60) for extremity pain or strong suspicion for kidney stone
6. Consider Morphine 2-10mg IV for rare causes of severe pain that impedes movement and transport of the patient
PURPOSE: To establish treatment standards for routine delivery and complications of OB-GYN patients

PRACTICE:

1. For routine delivery: note time of delivery, allow placenta to deliver spontaneously without pulling; transport placenta with patient for OB inspection

2. For prolapsed cord:
 A) Administer oxygen via non-rebreather mask
 B) Place mother in trendelenburg or knee-chest position
 C) Release pressure on cord by inserting a gloved hand into the vagina and apply gentle pressure to the infant’s head; transport rapidly in this position

3. For breech presentation:
 A) Facilitate routine breech delivery if possible
 B) Administer oxygen via nasal cannula or non-rebreather mask based on the clinical severity of the patient
 C) If the head fails to deliver, create infant airway by inserting a gloved hand into the vagina & forming a “V” with index & long finger over the infant’s mouth and nose; transport rapidly in this position

4. For extremity presentation:
 A) Transport rapidly & contact medical control

5. For vaginal bleeding/placental abruption:
 A) Administer oxygen via nasal cannula or non-rebreather mask based on the clinical severity of the patient
 B) Establish IV access with 500-1000cc fluid bolus of NS if SBP < 100

6. For preeclampsia (edema, confusion, abdominal pain, BP > 140/90) or eclampsia (presence of seizures in setting of preeclampsia):
 A) Obtain fingerstick glucose level
 B) Administer oxygen via non-rebreather
 C) Obtain IV access

 CONTACT MEDICAL CONTROL

 D) Consider valium 5mg IV for seizures; may repeat in 5 minutes if ineffective
 E) Consider magnesium sulfate 2g IV
 F) Rapid transport

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator
PURPOSE: To establish guidelines for AED use in cardiac arrest when no conventional monitor/defibrillator is not immediately available.

POLICY: AED use for cardiac arrest should be used if an AED is present and no conventional monitor/defibrillator is immediately available.

PRACTICE:
1. Patients must be at least one year of age for AED use.
2. Confirm cardiac arrest (absence of a pulse).
3. Perform CPR with focus on minimization of interruption of compressions until AED can be attached.
4. Attach AED appropriately.
5. Do not touch patient while AED analyzes rhythm.
6. If “no shock advised” continue CPR for 5 cycles and re-analyze rhythm.
 A) Secure airway with ET or ETC placement.
7. If “shock advised”:
 A) Verbally command “all clear”.
 B) Press “shock” and administer a single defibrillation.
 C) Immediately resume 5 cycles of CPR.
 D) Re-analyze rhythm; go to # 6 above.
8. Continue steps 6 - 8 until monitor arrives.
9. Maintain crew and bystander safety around AED.
10. Do not use AED in standing water.
PURPOSE: To establish guidelines for rational selective spinal immobilization of injured patients.

POLICY: Full spinal immobilization is indicated any time the chief complaint or the mechanism of injury indicates potential for injury to the spine. This includes patients with blunt trauma, head trauma, or axial spine trauma.

Assessment-based selective spinal immobilization is safe and effective in the prehospital environment.

PRACTICE:

Spinal immobilization is required in the following circumstances:
1. Mechanism of injury suggestive of possible spinal injury AND
2. Patient complains of spontaneous or elicited spinal pain, OR
3. A sensory or motor deficit is noted in the trunk or any extremity OR
4. The patient's reliability during examination is unreliable due to:
 a. Depressed or altered level of consciousness due to head injury, intoxication, or drug or alcohol ingestion
 b. Other distracting injuries are present (judgment call on the examiner)
 c. Acute stress reaction is present
 d. Poor communication, i.e. young children or language barrier

Spinal immobilization should not be used solely based on mild mechanism of injury when the above criteria are not met.

Spinal immobilization may be omitted when ALL of the following conditions are present:
1. Normal neurologic examination (no motor or sensory deficits) AND
 a. Patient is fully alert and oriented appropriately
 b. Demonstrates normal motor and sensory functions in trunk and extremities
2. Patient denies any neck or back pain
3. No neck or back tenderness or deformity noted on palpation of the entire spine
4. No neck or back pain noted during range-of-motion testing of the cervical spine (flexion/extension, rotation, & lateral bending)
5. No evidence or suggestion of intoxication or impairment from drugs, medications, or alcohol
6. No other distracting painful injury that compromises examination findings of the spine

Thorough documentation on the PCR is critical, & should include all exam findings, neurologic assessment & exam, and patient reliability.

Preston A. Ball, M.D., Medical Director
Capt. Bobby Ogletree, EMS Coordinator
Isolated gunshot wounds to the head (not neck) do not require spinal immobilization and may be deleterious. Penetrating injury to the neck carry a high incidence of spinal injury and should be immobilized.

<table>
<thead>
<tr>
<th>Low risk mechanism of injury?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is it a reliable patient history/examination?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is there present spine pain or tenderness?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is a normal sensory/motor exam present?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal</td>
</tr>
<tr>
<td>Normal</td>
</tr>
</tbody>
</table>

CONSIDER NO IMMobilIZATION
PURPOSE: To establish criteria and guidelines for use of physical restraints

POLICY: Physical restraint use is permissible for use in patients that pose a threat or danger to himself or others. Only soft restraints are to be used. If law enforcement personnel apply handcuffs, they will be asked to accompany the patient during transport and monitor their use.

PRACTICE:

CONTACT MEDICAL CONTROL

1. Physical restraints are indicated for patients with medical or mental conditions that warrant immediate ambulance transport and who are exhibiting behavior that the treating paramedic feels will or may endanger the patient or others.
2. Hostile, unwilling patients with good decision-making capacity can refuse treatment, except if suicidal.
3. Assess for medical causes of agitation or combative ness, such as head injury, hypoxia, hypoglycemia, stroke, intoxication, or drug ingestion.
4. Obtain pulse oximetry reading and fingerstick glucose level if any alteration in mental status is present.
5. Document distal neurovascular function after restraints are applied.
6. No patient with restraints is to be transported prone for any reason.
7. Monitor closely during transport.
PURPOSE: To establish guidelines for prehospital treatment of children with fever

PRACTICE: For children with temperature of 100.4 F or greater who have NOT ingested Acetaminophen or a medication containing Acetaminophen within the past 4 hours, AND are conscious and able to swallow appropriately.

1. Children’s Acetaminophen 15 mg/kg PO
2. If vomiting is present, consider Zofran 2mg IV